Propagation in Optical Fibres

HTE - 29.01.2013

1. Basics

For sinusoidal variations, the basic relation between speed of light, denoted by ¢ frequency (of light)
denoted by f and wavelength (of light) denoted by A is

c=fA (1.1)

where ¢ =2.997925x10° m/s ~3x10° m/s in vacuum (free space), i.e. in atmosphere free
environment. Depending on the refractive index of the medium, 7, the speed of light and the
related quantities will change as
c A 2nr 21w
Cn:_ , 2/":— , k":kn:—:—
n n A A

c :speed of light in free space , c, : speed of light in medium with refractive index n

A : wavelength of light in free space , A : wavelength of light in medium with refractive index n

k : wave number in free space , k, : wave number in medium with refractive index n 1.2)

The implication in (1.2) is that if the refractive index of the medium is n = 1, then the speed of light,
wavelength of light and the associated wave number will remain as that of vacuum, that is the

parameters without any index. But if n =1, thenc, <c, 4 <A and k, >k, since in vacuum,
n =1 and in other mediums n > 1, for instance, n = 1.33 in water, n = 1.5 in glass, n = 2.42 in

diamond. Another implication of (1.2) is that when light changes the medium of propagation, its
speed, its wavelength and the wave number change but its frequency (i.e. the number of cycles it

makes per unit time) remains the same such that ¢ = f'A is always satisfied. The refractive index

property is related to the dielectric characteristics of the medium and is also measured by the
dielectric constant, relative permittivity, as we shall see later.

It is worth noting that refractive index may change according to spatial coordinates, even with time
(temporal coordinate). Being aware of such characteristics allows us to guide light and a medium,
thus achieve communication using light frequencies as carriers. It is important to realize that optical

frequencies are quite high, for instance at a wavelength of A =1 um, the frequency becomes

¢ 3x10°m/s

e = 3x10" Hz =300 THz (1.3)
A 1 ym

f=

Hence it is reasonable to assume that we can place, multiplex (in FDM sense) a lot of message signals
onto such high frequency carriers. It is customary to speak in terms of wavelengths rather than
frequencies for the optical range.

1. 1 Simple Laws of Reflection, Refraction, Principle of Total Reflection
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By taking a simple two dimensional geometry, we illustrate in Fig. 1.1, an optical ray incident on a
boundary where there occurs a change in the refractive index and how it is reflected and refracted.
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Fig. 1.1 Illustration of simple two dimensional geometry for incident, reflected and refracted rays.

As seen from Fig. 1.1, when a ray is incident upon a boundary where there is a refractive index

change from n to n,, there is refraction as well as reflection. The amount of reflection and

refraction is related to the individual refractive indices of the two mediums. Since we have arranged

that n, <n,, then ¢ < ¢,, and according to Snell’s law, these angles are connected as follows

n sin(g,) = n, sin(4,) (1.4)

Furthermore, the angle of incidence and the angle of reflection are the same, i.e. they are both & as

shown in Fig. 1.1.

From (1.4), we deduce that there will be an angle of @, such that ¢, = 7 /2, then

nsin(4)=n, sin{% =n, (1.5)

At this point, we let ¢ — ¢ and call @ the critical angle, hence

: n . |n . |n
sin(¢,)=-—=2 or ¢ =sin"'|—=2|=asin|> (1.6)
nl nl nl
Under the circumstances that @, reaches ¢ , the refracted component will vanish and there will be

total reflection as shown in Fig. 1.2. Note that since €, + ¢ = 7 /2, the condition in (1.6) can also be

expressed as
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cos(6,)= Loor 6 =cos’ [&] = acos[&] (1.7)
n
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Fig. 1.2 Illustration of reaching the critical angle and total reflection stage.

Assuming that propagation of light can be represented in terms of ray tracing as given in Figs. 1.1
and 1.2, the above total reflection phenomena is exactly the principle of light guidance in optical
fibres.

Exercise 1. 1 : Consider a boundary between air (vacuum) and water. Find the critical angles ¢ and

0 for total reflection to occur. Discuss if total reflection is possible both ways, i.e. when the incident

ray is on the side of air medium and when the incident ray is on the side of water medium. Make the
necessary plots and indicate the necessary angles.

Comments on the total reflection phenomena shown in Fig. 1.2

a) It is obvious then when n, < n,, then it is impossible to reach a stage of critical angle and total

reflection. In this case mostly refraction will take place.

b) Light propagation can be studied both in terms or rays and waves. When we do wave analysis,
then we find that even after the critical angle stage, refraction (or energy loss due to refraction) is
possible due to electromagnetic tunnelling, depending on how much the field extends into the
other medium beyond the boundary.

c) In real life, we have a three dimensional situation and the boundary is not a flat surface. Despite
this however, Fig. 1.1 provides the basic principle of reflection and refraction mechanisms.

2. Optical Fibres

2.1 Mechanical Construction of Optical Fibres
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An optical fibre cable is a cylindrical shaped closed medium that guides or carries light in the form of
electromagnetic waves. The mechanical construction of the optical fibre is shown in Fig. 2.1. Due to
the existence of boundary conditions set by the physical dimensions, only those waves, called modes,
are allowed to propagate. This propagation is mostly confined to the core region. The refractive
index difference between the core and the cladding provides the necessary guidance of the
electromagnetic waves or the total internal reflection mechanism along the fibre propagation axis.
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Fig. 2.1 Mechanical construction of a fibre cable.
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We classify three types of fibre, depending on core radius (or diameter), i.e., a, refractive index

profile in the core, i.e. n,. These are step index multimode, graded index multimode and step index

single mode fibres, as illustrated in Fig. 2.2.
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Fig. 2.2 Types of fibres.

As the names given in Fig. 2.2 imply, many modes propagate in multimode fibres, since many modes
satisfy the propagation conditions, this causes dispersion, because the time it takes for each mode to
traverse the fibre length is different. This is balanced to a certain extent in graded index fibres. On
the other hand, single mode fibres are constructed so that they transmit only the fundamental mode,
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called HE

used in public communication facilities are single mode fibres (single mode fibres have always step

.1» thus these fibres do not suffer from multimode dispersion. Almost 100 % of the fibres

refractive index profile).

The physical core and cladding dimensions (radius or diameter) are more or less standardized as
follows

a) The cladding diameter is always, 26 =125 um.

b) The core diameter in multimode fibres is 2a =50 zm.

c) The core diameter in single mode fibres may vary 2a =2 um —10 pm. As will be seen later the
single mode property is achieved by arranging the parameters of core radius, wavelength of

operation and the refractive index difference between core and cladding, i.e. betweenn, and n, .

2.2 Numerical Aperture

Now based on the simple rules of reflection and refraction depicted in Fig. 1.1 and 1.2, we try to
determine, the ray collecting cone of the fibre front face, i.e. fibre entrance. So this is finding the
maximum incidence angles of rays, which will propagate in fibre. Fig. 2.3 shows the associated two
dimensional view of this situation for a simple multimode step index fibre.
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Fig. 2.3 View of fibre end face for calculation of numerical aperture.

Looking at Fig. 2.3, we note that the reflection and the refraction phenomena encountered on the
core cladding boundary (interface) is exactly the same as the one in Figs. 1.1 and 1.2. Hence from
(1.6), we write the for the condition of an incident ray from the light source to be totally internally
reflected from the core cladding boundary as

sin(¢c>:—2 (2.1)

where ¢ is the critical value of the angle ¢ which means that for total internal reflection to take

place, the minimum value that can be taken up by ¢ is ¢ . So total internal reflection will take place
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provided that ¢ > @ . Rearranging (2.1) and relating the result to the angle & by keeping in mind
that §+60=rx/2,weget

sin*(4,)=—=% , 1—sin <¢):n‘ 2n2 =sin’(6,)
cos(6,) = % , 6 =cos” [%] = acos [%] (2.2)

Thus similar to discussion for @, we can say that, total internal reflection will take place if 8 < 198.
Using the Snell’s law, we can also relate everything to the angle of fibre entrance, 6, as

n,sin(6,)=n,sin(@)=sin(6,) , n,=1

0

s1n( ) sm( ) (2.3)

Using (2.2), we define the acceptance angle called the numerical aperture (NA) as sine of the

maximum angle subtended by a ray at fibre entrance, i.e. Siﬂ(@oc) or alternatively as the product of

the core refractive index, n, and the sine of maximum angle of a refracted ray at fibre entrance,

hence NA will be given by

NA =sin(6, ) =n,sin(6,)=(n' —n] )0'5 (2.4)

1

It is important to realize that NA is solely determined by the total internal reflection conditions at the

core cladding boundary. Otherwise rays with any value of &, will enter (refract into) the fibre, since

n>n,=1.

As can be seen (2.4) is in the form of refractive index difference between core and cladding. In other
words, the principle of light guidance in fibres is based on the (minute) refractive index difference

between core and cladding, rather than the absolute values of n, and n, . For this reason we define

the following (normalized) refractive index difference term

2 2
A=B T BT e An=n—n, , 2n=n+n, (2.5)
2n; n,
In terms of A, NA will become
NA =|(n,—n,)(n +n)]" =n24 (2.6)

It is important to summarize the conditions of total internal reflection and refraction in a step fibre as
follows

If ¢>¢ ord<6 orf <6,  total internal reflection ito the core
or propagation along fibre axis
If ¢<¢ or@>6 orb >6,  refraction out to cladding (2.7)
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Example 2.1 : A step index optical fibre has a core diameter is large enough so that the ray theory is

considered applicable. In this fibre, n, =1.5 and n, =1.47 . Determine the followings

a) The critical angle at core cladding boundary for total internal reflection to occur, i.e. ¢ .

b) NA of the fibre.

c) The acceptance angle, 6, at the air fibre boundary.

Solution :

a) From (2.1), the angle at core cladding boundary for total internal reflection to occur is

¢ =sin"'|2|=sin" [ﬂ] —78.5" (2.8)
n, 1.5
b) From (2.4), NAis
NA=(n—n))" =(15-147*)" =03 (2.9)

c) From (2.4), the acceptance angle, 6, at the air fibre boundary is

6,

0

,=sin"'(NA)=17.4° (2.10)

As seen in this numeric example, the refractive index difference between the core and the cladding is
indeed small (minute).

Exercise 2.1 : Examine the dependence of ¢, NA and €, on n, and n,in a step index fibre.

Comment whether the larger or smaller values of ¢ , NA and &, would be useful.

The above analysis is quite useful to given an insight into propagation of rays in a fibre. But we
should not forget that ray theory is applicable if the dimensions of the physical objects are much
larger than the wavelength. For instance in the above case, where the (multimode) step index fibre
was considered, the fibre core diameter is 50 pm, hence compared with a wavelength of A=1 " ,
we can safely say that ray theory is applicable. But in other cases, we certainly have to use wave or
mode theory which is applicable independent of dimensions of the physical objects present on the
way of propagation. In particular, we need to see how we can approach the single mode limit. We do
this in the next section.

3. Mode Theory (Modal Analysis)

For this analysis, convenient form of Maxwell’s equations is required. Because of the cylindrical
geometry of the fibre, we use cylindrical coordinates, where the respective coordinates will be
r, @, Z as shown in Fig. 3.1.
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Fig. 3.1 Coordinate axes in a fibre.

In (3.1), we find the relevant Maxwell’s equations.

Curl of E : VxE:—a’u—H
ot
Curl of H : VtzaiE
ot
DivofE: V:E=0 , DivofH: V-H=0 3.1

E and H are electric and magnetic field vectors, ?indicates time. @ and & stand for the permeability

and permittivity of the medium so that they represent the magnetic and electrical properties of the
medium. 1 and & are further expanded as given below in (3.2)

M= LU, 4. : Relative permeability of medium
U, : Permeability of free space (vacuum)
g : Relative permitivity of medium

: Permitivity of free space (vacuum) (3.2)

The speed of light in vacuum and in other mediums, the wave number in free space and in other
mediums are further related to the quantities of (3.2) as follows
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Free space: c= ! =Af = 12 :% ¢ : speed of light in free space

VG, 2z

A : wavelength of light in free space
f : frequency of light in free space
o : angular frequency of light in free space

Inamediumwith &, =¢, &, , s, =p py=p, , u =1

1 1 1 wow
P S = if = A =—— . 1=
1 \//'11‘91 \//1081 \/ﬂogngo /11 1272- 1 ", M Ho&o \/7

: speed of light in a medium with arbitry permitivity &, and p =1

=

4 wavelength of light in a medium with arbitry permitivity £, and x =1

k, : wavenumber of light in a medium with arbitry permitivity ¢, and =1 (3.3)

From (3.3), we understand that the refractive index is equal to the square root of the relative
permittivity of the medium. Since the fibre material has no magnetic properties, then g = lin fibre.

This means, the electromagnetic propagation or the guidance of light in fibre will entirely rely on
refractive index changes.

Now returning to (3.1), we take the curl of the equation on the first line and benefit from the
equation on the second line and the vector identities to write

O’E n’ O’E n* O’E
V’E = ue =— , VE—— =
Heor — @ or o
OH n’ 0’H n® O’'H
VH= e or & of vzH_c_2 o 34

The equations in (3.4) are known as Helmhotz’s equations. Our time dependence will be sinusoidal,
ie., exp(ja)t):exp(j272'ft) and the propagation axis, i.e. z dependence will be exp(—jﬂz),
where [is known as the propagation constant (the wave number) of the modes propagating in

fibre. Using these and the equivalence of V?in (3.4), we obtain the following differential equation
for the z component of the electric and magnetic fields

OPE 10E. 1 0°E
syt — 9 (R —p)E =0
or’ +r or +r2 o¢’ +< ﬂ> ’

O°H 10H 1 0°H
s P9 (e p)H. =0 35
or’ +r or +r2 o’ +< ﬂ> : (3-3)

The other components £ and E,, H and H, can be expressed in terms of E , and /.

components as shown below.
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E 1 [ﬂaEz+ﬂ_waHz]’E¢_ 1 [ﬁaE_,_ﬂwaHz]

=) o o 09 j=p )N\ r 0¢ or
1 OH. ¢wOE 1 p OH OFE
H — i ————=\ H = — z = 3.6
’ j(kz—ﬁz)[ﬂ or r 8¢] ’ j(kz—,b’z)[r ¢ oo 8r] 3.6)
E_will have functionally separable dependence on , ¢, z and ¢ which can be written as
E. = AF (r)F,(¢)F.(z) F (¢) (3.7)

where Ais a constant to be determined by taking into account the boundary conditions (at core
cladding interface). We have already postulated the dependence on z and ¢ in the form of

F (z)E (t):exp(—jﬂz)exp(j2iz't) (3.8)

We further envisage that the dependence on ¢ is also sinusoidal, such that

F,(¢) = exp(~jv9) (39)

where for completeness v has to be an integer. Thus (3.5) will turn into a differential equation in

terms of F as stated below

OF 10F
+_

or’ r or

+[k2—ﬁ2—:—z]5:o (3.10)

(3.10) is the well known Bessel equation. The solution to (3.10) can be any of the four types of Bessel
functions, symbolically denoted as J, (x), Y, (x), I, (x), K, (x), where v is called the order of the

Bessel function, while xis name the argument. We note we have not applied the boundary
conditions as yet, so (3.10) covers the propagation both in the core and the cladding. Keeping in mind
that propagating modes (physically corresponding to those rays that satisfy the total internal
reflection properties) should have finite amplitudes and some oscillatory behaviour, when inside the
core and exponential decay from the core cladding interface radially outwards.
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Fig. 3.2 illustrates the behaviours of all possible Bessel functions against the argument, x. In our case
this argument will be the radial coordinate », coupled with some multiplicative factor. In line with
the physical interpretation made above for the propagating mode, a suitable choice (from the

inspection of the Bessel curves in Fig. 3.2) is the representation of the mode field by J inside the

core and by K inside the cladding. Considering the magnetic field component as well, we can

express E_and H _fields inside and outside the core as follows

E_ (r<a)=AJ,(ur)exp(jvp)exp(jBz)exp(j2nt)  inside core
H_(r<a)=BJ,(ur)exp(jvé)exp(jfz)exp(j2nt)  inside core
E_(r>a)=CK,(wr)exp(jvé)exp(jfz)exp(j2zt)  inside cladding
H_ (r>a)=DK,(wr)exp(jvp)exp(jBz)exp(j2zt)  inside cladding

where B, C, D are new constants and the other newly introduced terms are defined as

w=k—p ., k= 2’2”" =nk
2 2 2 27[”2
w=p-k , k= N =nk

Note that the propagation constant /£ is limited such that

k,=nk<p<k=nk

(3.11)

(3.12)

(3.13)

. 2 2 oy . . .
In this manner, u”and w”are always positive or ##and ware always real. This is essential for

propagating modes. u”and w’ becoming negative corresponds to the case of refracting modes.

Now we come to the application of boundary conditions at 7 =a, i.e. the core cladding boundary. At

this boundary, for continuity, we have to match the following fields
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E_(coreatr=a)=E_(cladding at r = a)
E (core atr = a) =LK, (cladding atr=a
H

(
(

core at r = a)= H_(cladding at r = a)
=H

H (coreatr = a) , (cladding atr = a) (3.14)

¢

From the matching conditions of (3.14) and the equalities from (3.6), we get only four constants to
be determined from these boundary conditions. These are the constants or the coefficients given in
(3.11)and named as A, B, C, D.Here our ait is to find, what is called the characteristic equation,
that will yield the propagation constants, i.e. [values of those modes that satisfy the conditions of
forward propagation, i.e. propagation to the positive side of the z axis. For this we seek a nontrivial
solution to (3.14), which exists if the determinant of the coefficients 4, B, C, D are zero. This

requirement will deliver the following characteristic equation (CE).

:[&][i+i] (3.15)

a u w

J; (ua) KL (wa)
uJ, (ua) wK, (wa)

5 J (ua) 5 K (Wa)
kl v +k2 v
ut, (ua) wkK, (wa)

where prime, ‘ indicates the derivative of the Bessel function with respect to its argument. By using
the following relations

J(x)=05[J, (x)=J., ()] . J(x)= O.5%[JH (x) 4+, (x)]
K (x)=—05[K,  (x)+K,, (x)] . Kv<x):O.5%[KH(x)—KvH(x)] (3.16)

It is possible to replace all Bessel function derivatives in (3.15), an act we shall carry out when we
write the different versions of CE. Firstly, we examine the case of v = 0. Here the right hand side of
(3.15) becomes zero. Thus we have two CEs separated by the square brackets on the left hand side of
(3.15). After using the derivative equivalents given in (3.16), these two CEs will become

=0 CE for TE modes

”n‘]o (un ) W"KO (W">

2 2
kK (w,) KK (w,) =0 CE for TM modes (3.17)
unJO (un ) WnKO (W">

where we have used the normalized definitions of, u, = ua, w, = wa . TE mode means that £ =0
, while H_=0, i.e. there is no electric field component along the propagation axis. TM mode is
defined on the other hand as, £. = 0, H_ = 0. From (3.12), bearing in mind that

_ 27n, _ 27n,

k, = . k= 3.18
= 7 (3.18)

The CE given in (3.17) for TM can be converted into
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CE for TM modes (3.19)

Finding the zeros (the roots) of the CEs for TE and TM modes will provide us with [ values of those
modes that will propagate in the fibre. To solve the CEs in (3.17) in this manner, first we remove the
singularity in the denominator due to J, (un) by multiplying both sides of the equation by J| (u") ,
hence (3.17) and (3.19) will turn into

2 2 2
n'J, (u,) L, (1)K (w,) _ 0, n2, () +ud, (u)L(W) —0 CE for TM modes
u, WnKO (Wn ) W"KO (M/” )
Ji (”n) 4 Jo (”n)Kl (Wn) =0, J (”n)*‘”njo (%)M =0 CE for TE modes (3.20)
un WnKO (Wn ) W"KO W” )

To generalize the process of finding [5's and make this process applicable for any fibre, we define a

fibre parameter called normalized frequency, V' as follows

u =au,w =aw,f =af

Uj :azuz :az (k12 _ﬂz):azklz _ﬁnz

w=aw =ad’ <,6’2 —k22>=ﬂf —a’k;

Vi=ul+w =da (W +w)=a (kK —k)=a'k’ (n] —n})=a’k’NA® (3.21)

When finding the roots of (3.20), we have to plot of the left hand side of the CEs against two
variables, i.e. #, and w . For TM modes, we also need to know (the numeric values of) n, and n,.
So in the search for roots of CEs, three dimensional plots will emerge. One sample plot of the CE form
TM modes is shown in Fig. 3.3. As seen from this figure, there are several the zero crossings, i.e. the
roots, but they are hardly visible. In this sense a contour plot provides a much clearer picture. We
combine this contour plot with the first equation on the last line of (3.21), thus obtain what is called
V' circles. Such combined plot can be found in Fig. 3.4 for the CE of TM modes. As seen from Fig. 3.4,
the indices of modes are designated as TM  where v is the circumfrential mode number
(remember that for TE and TM modes, v = 0 ) and m is the order of root. For instance, the first zero
crossing (root) is given the index of m = 1, while the second root is given the index of m = 2 and so

on. Thus we see on the graph of Fig. 3.4, the mode labels of TM,and TM, .

Another point of interest is that, since in a fibre, the refractive index difference is much smaller than

unity, or n, = n,, there s hardly any difference between the zero crossings of TE and TM modes. This

means CE of TE modes and CE of TM modes placed on the first and second lines of (3.20) are
essentially one single equation. This case is graphically illustrated in Fig. 3.5. It is worth mentioning

that the status of n, = n, is named as weak guidance in literature.
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Three dimensional plot of characteristic equation (CE) for TM modes
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Fig. 3.3 The three dimensional view of the CE for TM modes.
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Fig. 3.4 Contour plot of the CE for TM modes and the associated V' circles.

Using (3.21), the cross points in Fig. 3.4 can give us the (normalized) propagation constant, i.e. 3 or
P of that particular mode at that particular V' value. A sample marking is made on Fig. 3.4 for TM,
at /' = 8. Of course to arrive at the actual numeric value of £ or [, according to (3.21) we need to
know the core radius, core refractive index, cladding refractive index or the refractive index
difference and the wavelength of the source i.e. a, n,, n, or A, 4. In practice, such details can be

found on manufacturer's sheet (of course 4 depends on our choice of light source). But with the
definitions given in (3.12), we are able to treat the propagation in fibres by a single parameter. This
means, although there are three separate parameters defining the propagation behaviour of fibre,
these are core radius, refractive index difference and the wavelength of operation, they can be
combined into a single parameter called normalized frequency parameter. And the propagation
characteristics of a fibre can be analysed purely in terms of that normalized frequency parameter.
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Contour plots of CEs for TE and TM modes and different V circles
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Fig. 3.5 Contour plots of the CE for TE and TM modes and the associated V' circles.

Now we return to the general CE given in (3.15) and analyse the case of v = 0. With this setting, by
using (3.16) we obtain

Joln) _ Koi(m) |
uJ, (u) wK, <w>

n

k! o (1) +K; Kolw)_g (3.22)
uJ, (u,) w,K (w,)

n n

+

Again plotting (3.22) will give us new zero crossings, new roots and new modes for which the
propagation constants can be calculated as explained above. Further simplification can be achieved
for the CE of (3.22). That is under the principle of weak guidance, i.e. n, =n, or k, = k,. The terms

of (3.22) can be approximated as

T=KT=KT . T,=kKT=kT,

TT,+TT, =TKT, + TKT, = TKT, + TKT, =0
TT,+TT, =2k, = 2T, =0 — TT,=0 (3.23)

The last (approximate) equality means (after converting the approximation into exactness)

Jv+1 (un) + KVH(Wn)
uJ, (u) wnKv(wn)

J. (u) K, (w )

v n

uJ, (u) B wK, (W)

=0 (3.24)

Setting the first and the second square bracketed terms individually to zero, we get
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+1(”n>_|_ KV+‘< ) =0 CE for EH modes

ud () wK(w)

vl( ) KH( ") =0 CE for HE modes (3.26)
J(n) WK(W")

In order to arrive at the limit of single mode fibre, it is instructive to plot the CEs for HE and HE
modes as well. Such a plot can be found in Fig 3.6. We see from Fig. 3.6 that only one mode does not
have a cut-off, which means it can theoretically propagate what the ' value of the fibre is. That
mode is HE, which is the mode chosen for propagate in single mode fibres. Although this mode will
continue to exist regardless of fibre V' value, for physical reasons, we wish to make the core radius as
large as possible to the limit of prevention other modes from propagation. Such a limit can be set by
the joint examination of Figs. 3.5 and 3.6. From there and from the horizontal axis of Fig. 3.5, we see
that the closest modes to HE, are TE , and TM_, which will start to propagate if /' >2.4. The

more exact value is V' > 2.45, which corresponds to the first zero crossing of Bessel function J, (x)
Thus we can say that if we keep the fibre V' parameter below the value of 2.45, it will be a single

mode fibre.

Contour plots of HE and EH modes for V= 1 and different V circles
10
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Fig. 3.6 Contour plots of the CE for HE and EH modes and the associated V' circles.

As can be noted from (3.26) and Fig. 3.6, it is possible to obtain many modes of EH and HE, since we
are at liberty to vary from v =1 upwards. But those modes, whose zero crossings (roots) fall outside
the V circle of the fibre will not of course propagate, hence we can terminate the process of finding
roots from such v values onwards. Below we do an example to illustrate this point.

Example 3.1 : Assume that we have a fibre with JV = 4 and we wish to find which TE and TM modes
propagate in this fibre at what propagation constants.

Solution : From Fig. 3.5, we find that V' = 4 circle only encloses the zero crossings (roots) of

TE,,, TM,, . Hence from the point of view of TE and TM modes, only TE , TM , will propagate in

01?2
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this fibre. As explained above, the exact numeric value of propagation constants i.e., /3 or L will be

determined by the knowledge of other fibre parameters. Assuming, we are dealing with a fibre of
a, n, =1.48, n,=1.47 and we use a light source of A =1.55 pm, then from the last line of (3.21),

the core radius to result in a fibre frequency parameter of ' = 4 is

4 V

k(nf—nzz)o5 N 2;7< 2 2)0-5

a=

=5.745 um (3.27)

1 2

From Fig. 3.5, we read at the cross point of zero crossings (roots) of TE ,, TM  and the J = 4

01°

circle, u, =3, w, = 2.6. Benefiting from (3.21) and (3.27), we can calculate 8 and [ as follows

B, =(a’k: —u)” =343368 or f,=(a’k} +w?) =34.3334

o _ s 976%10° (3.28)
a

As a final point, using (3.13), we check that

k, =nk<p<k =nk
k,=5.9589x10° , B=5976x10" , k =5.9994x10° (3.29)

Exercise 3.1 : Repeat the calculations in Example 3.1, by switching to ¥ = 6and V' =10 and by
including HE, and EH,  from Fig. 3.6. Assume that the larger values of ' is obtained by enlarging

the core radius.

As an alternative to the displays given in Figs. 3.4 to 3.6 is to plot the variation of the propagation
constant or its wavelength and refractive index normalized version against V' . Such a graph is given
in Fig. 3.7 (copied directly from Fig. 2.5 of Ref. [2], pay attention that in this figure normalized

propagation constant is shown by b , below we use the notation b , since b is used in these notes to

indicate cladding radius).

Here the normalized propagation constant, denoted by b is related to the actual propagation

constant [ as

p = Blk=n (3.30)

n
n,—n,

Since in this definition wavelength and the refractive indices are taken into account, we talk about
the variation of b, against V', it effectively means the variations against the core radius, a. As
stated in (3.29), for propagating modes fis limited as n,k < # <n k, this way b, will range between

0 to 1 as shown on the left hand side vertical axis of Fig. 3.7. The vertical axis on the right hand side
of Fig. 3.7 is on the other hand marked in the scaling of f/k ,namedas 7 .
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Fig. 3. 7. The variation of normalized propagation constant against the normalized frequency of the
fibre for some of the lowest order modes.

Example 3.2 : By adopting the refractive index values and the wavelength of operation, i.e.
n, =1.48, n,=1.47, A =1.55 um find b, using the formulation given in (3.20) and the plots in Figs.
35 and 36 at V=4, V=6and V=10 for TE,, TM,,, HE,, and HE, . Compare these

calculations with those readings form Fig. 3.7.

Solution : We start with V¥ =4 and TE, , TM

o .1» because [is calculated in Example 3.1 readily.

b, =L nserting f=5976x10°, n =148 , n,=147, k=22 = 40537x10°
n,—n, A

b, =LK _ 0 4209 for TE, , TM,, (3.30)
n,—n,

Drawing a vertical line in Fig. 3.7, starting at the point of I = 4 on the horizontal axis, we find that
TM,, curves aroundb, = 0.4209, that is,

the value given on the second line of (3.30). Such action is marked in Fig. 3.7 with coloured lines.

this vertical line will approximately intersect with TE ,

Now we turn to b, of HE,, at /' = 4 . From Fig. 3.6 that the intersection of V' = 4 circle with HE |

curve is at u, =1.914, w =3.5. Again benefiting from (3.21), (3.27), (3.29) and (3.30), we can

calculate Band b, as follows
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B (a2k12 . u2 )OAS

p= - inserting a =5.745 k = x ° u= 914
a
B =5.9507x10°
b =LIETn serting B—5.9507x10° , n, =148 , n=147, k=% —4.0537x10°
n,—n, A
b =0.8257 (3.31)

Again by following the drawn vertical line in Fig. 3.7, starting at the point of V' = 4 on the horizontal

axis, we find that this vertical line will approximately intersect with HE | curve aroundb, = 0.8257,

that is, the value given on the final line of (3.31).
Now we handle, V' = 6. For this we recalculate the core radius using (3.27)

o 6
k(n:—n2)"  4.0537x10°(1.48° —1.47°)

a=

_—7.5325 um (3.32)

From Fig. 3.6, we the intersection of I/ = 6 with HE,, curve at u, =2.061, w = 5.6, then as in
(3.31) Band b, are calculated as
(azklz _uj )0.5

p=-——""— inserting a=7.5325 k = x ° u = .061
a

B=5.9537x10°

b =LK serting B—5.9537x10° , n —148 , n,=1.47, k:%”:4.0537x106

n,—n,

b =0.8825 (3.33)

We again see that, the value of b, = 0.8825 agrees well with the value read from the left side of the

vertical axis in Fig. 3.7. The case of other modes at I = 6 is left as lab exercise.

It is interesting to find a simple relationship between b, and ¥V for HE, curve. This is given by

b,(V)=(1.1428—-0.996/V) (3.34)

which is known to be accurate within 0.2 % for V' in the range 1.5-2.5, the range where most
practical single mode fibres lie in.

4. Single Mode Fibres

As mentioned above and as seen from Fig. 3.6, only one mode, namely HE , is free from cut off, i.e.

it propagates regardless of the V' value. This means that HE,, will continue to propagate even when,

the V' approaches zero, which corresponds to having core radius, assuming finite wavelength and
refractive index difference. Of course have a fibre of nearly zero radius would create practical
problems, such as alignment, handling etc. Therefore to obtain single mode fibre, we seek the largest
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value of V', yet eliminate the other modes. Looking at Fig. 3.5, we see that, modes closest HE, are
TE,, and TM,, . Hence it will be sufficient to set V" just below the cut off values of TE and TM,,,
that is I <2.45. From (3.17) and (3.20), this is the first root (the zero crossing) of J, (u = 2.45),

when w =0.

After suppressing the time variations, by using (3.6), (3.7) and (3.11), the radial component of the
single mode can be written as

jo (ur) exp(jfBz)= Mexp(jﬂz) , r.=rl/a r<a inside core
E _ O(un> JO(“n) (4 1)
"k (wr) K (wr) .
———Zexp(jfz)=——*Lexp(jBz) r>a inside cladding
K,(w,) Ky(w,)

It is possible to plot the radial component of the electric field, using formulation given in (4.1). This is
shown in Fig. 4.1.

Radial electric field distribution of a single mode fibre at different v values
25 T T T

V=24

e

T T

Field - | E |

Core « | —» Cladding
0 L | L i I

0 0.5 1 1.5 2 2.5 3
Normalized radial distance - r

n

Fig. 4.1 The radial electric field distribution of HE | in a single mode fibre at different V" values.

Quite a number of observations are possible regarding Fig. 4.1. They are listed below.

e The field in a single fibre distributes itself more or less evenly between the core and the cladding.
This is in contrast to the propagating modes of the multimode fibre where the field decays
considerably before the core cladding boundary. But in a single mode fibre, as seen from Fig. 4.1,
an important portion of the field propagates in the cladding region and this portion increases in
inverse proportionality with 7 values. For this reason illustrated in Fig. 4.1 and to minimize
alignment problems, we tend to operate at V' values (of course we must bear in mind that in all
cases, we cannot exceed V' =2.45).

e In a single mode fibre, cladding material has to be high quality (in addition to the core), due to the
existence of a sizable portion of the field in the cladding. This means that a constant refractive
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index value, n, must be maintained uniformly along the radial, circumferential and axial
directions, at least in the regions of close proximity to the core cladding boundary.

e Inside the core, field distribution is governed by the Bessel function, J, (unrn), while this is

handed over to the Bessel function Ko(wnrn)inside the cladding. Thanks to the boundary

matching conditions applied in (3.14), there is perfect continuity between the two fields at the

core cladding boundary, thatis 7 =l orr=a.

Note that in Fig. 4.1 variation of V' (or the fibre variation) is actually achieved by changing the core
radius, yet the horizontal axis is normalized with respect to the core radius of each fibre separately
and is common to all curves. In this manner, if the plot of the radial field for each fibre was along its
own absolute radial distance axis, the part of the field in the core and the cladding would change
somewhat. This fact does not alter the essence of above observations.

When a cross section of the single mode fibre is viewed, the illumination created by HE , mode will

look like the image given Fig. 4.2. As we see from this figure, the central part of the core area is highly
illuminated, but as we move to the cladding the, light intensity reduces.

-r
ny

Normalized y coordinate

-3 -2 -1 0 1 2 3
Normalized x coordinate - -~

Fig. 4.2 Light illumination of HE  mode in a single mode fibre of }'=2.

It is possible to gather and approximate the core and the cladding parts of the radial field of (4.1)
under a single Gaussian exponential as expressed below

2

E = Aexp[—%] exp(j32) (4.2)

s

where w_is known as the spot size determining basically how much the field is confined to the core
or how much it extends into the cladding. An approximate relation between w_ and V" exists and it

valid in the range 1.2 <V < 2.4 and is given by
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w =0.65+1.619V " +2.879) ¢ (4.3)

By choosing several V values, in Figs. 4.3 and 4.4, we try to illustrate how close (4.2) models the two
part field expression of (4.1).

Comparison of Bessel function and Gaussian exponential approximated representations of radial field distributions at V= 2.4

Bessel function representation -

T T T T T
1

0.9
0.8+

0.7k ro=1
n

0.6 r =a=3.45pm g
|

0.5+

0.4
Gaussian exponential approximation

0.3

Normalized field - | E |

0.2+

01 Core <« —» Cladding —
0 [ [

|

|

|

|

|

|

|

|

|

i
0 0.5 1 1.5 2 2.5 3
Normalized radial distance - r

Fig. 4.3 Bessel function representation and the Gaussian exponential approximation of the radial field

in a single mode fibreat ' =2.4.

Comparison of Bessel function and Gaussian exponential approximated representations of radial field distributions at V = 1.5

T T T

1 r=1 V=15 -
0.9 a=2154 um 7
0.8 —
0.7 \ -
0.6~ / ‘ \ Gaussian exponential approximation -
0.51- l

Bessel function representation

Normalized field - | E |

0.4}~ ‘ 4
|
0.3 :
|
0.2 :
| -
01} Core « — Cladding ES S~
0 L | L ! L
0 0.5 1 5 2 2.5 3

1.
Normalized radial distance - r,

Fig. 4.4 Bessel function representation and the Gaussian exponential approximation of the radial field

in a single mode fibreat J' =1.5.

Here the separate figures for ' = 2.4 and V' =1.5are chosen because of the common axis problem
mentioned above. Consequently, the normalized horizontal axis of Figs. 4.3 and 4.4 are according to
the core radius values given in these figures. Additionally in both figures, the amplitude of the field
(i.e. the vertical axis) for Bessel function representation is also normalized with respect to its peak in
order to get a meaningful comparison between Bessel function representation of (4.1) and the
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Gaussian exponential approximation of (4.3). Comparing Figs. 4.3 and 4.4, we see that at larger V'
values, the Gaussian exponential approximation of (4.3) is indeed a close match to the Bessel
function representation of (4.1). But as V is reduced, the difference between the two curves seems
to increase as displayed in Fig. 4.4. But this is considered to be major problem, since most practical
fibres are operated closerto V' =2.4.

Finally on single mode fibres, we calculate the percentage of mode power contained inside the core.

For this we take (4.2) and define a confinement factor, I'_ as follows

1 2
flef o, Jeol-2
. 0 w, 2
l—‘c — f;ore — o00 — — s2 — l—exp[——z]
total f |E,| dr, f exp[— 2;3; ]dr" “a
0 0 W,

=1—exp|— 4.4)

(0.65+1.619% % +2.8797

where on the last line of (4.4), we have used the J equivalence of w_given in (4.3).

In Fig. 4.5, I'_ is plotted against }".

Plot of percentage of power contained in the core, confinement factor against v
0.9 T T T T T

3 3 T

0.85|- -

0.8

0.75

0.7

0.65

0.6

Confinement factor - T

0.55

[ [ [ [ [
5 1.6 1.7 1.8 1.9 2 21 2.2 2.3 2.4
Normalized frequency - V

5 I I I
0.45[

Fig. 4.5 Plot of confinement factor showing the percentage of power contained in the core during
propagation in single mode fibre.

According to Fig. 4.5, just above 80 % of power of the HE | mode will be contained in the core when

V' =2.4, but this percentage drops as the value of V is lowered.

These notes are based on
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