Notes on Free Space Propagation (Based on Andrews 2005 and my own notes and papers) HTE —16.04.2012
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Fig. FS1 : General schematic diagram of fibre communication link and atmospheric communication link.
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U (R, t) is given, where R = (r, ¢,Z) orR= (x, y,z) and ¢ is time dependence, then U (R,t) satisfies the following

L, 0’U(R,2)

P 0 ... Wave equation (B1)

VU (R,t)—c
After we assume a sinusoidal time dependence, i.e. U(R,#)=U (R)exp(jot), then we obtain

(V2 +k? ) UR)=0 .. Helmbholtz equation (B2)

The Laplacian operator, V* is respectively expressed in cylindrical and Cartesian coordinates as follows

1o 0 19> o0 10 0 1909 0 . o .

V=——|r—|+— +—=——+ +— + in cylindrical coordinates B3a
- or [r 3r] 20 02 ror or  FoF  oF Y (B32)

2 2 2

V= 0 =+ 0 =+ 0 5 in Cartesian coordinates (B3b)
ox~ 0Oy~ Oz

Thus, Helmholtz equation for cylindrical coordinates is

OU(R) OU(R O’U(R) OU(R
1 ( )+ R) iz R) ( )+k2U (R)=0 in cylindrical coordinates (B4)

r  Oor or’ op’ T oz
Now we assume a z dependence of exp( jkz), such that U (R)=U (r)exp(jkz), where r =(r,¢) or r =(x, y) Then Helmholtz equation will

become
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1o
r Or

ou)

1 0°U(r) 9°U(r) oU (r)
or = *

+2jk————==0 in cylindrical coordinates B5
o 0’¢ 0z° / 0z Y (B3)

Usually, the optical propagation is confined to z axis. This means that the transverse distance is much smaller the axial distance, then we may

oU(r) . . . L _ :
drop the term 5 5 ) since it is too small with respect to the others. The remaining part of the wave equation is called the paraxial wave
z

equation (PWE). This is shown below

19

r or

raU—(r>+

or

%82U(r)+2jk oU (r) :l8U(r)jL d°U (r) LZ(?ZU(r)

o 2Ur)
r o¢ 0z ro or or’ /

> =0 PWE in cylindrical coordinates (B6)
0¢ 0z

Simple waves (optical fields)

A) Plane wave

The expression for a plane wave at source (transmitter) at z =0 is
UR)=U(r,z=0)=4,exp(j¢,) (B7)
Note that the expression of plane wave on the right hand side contains no coordinate dependence. As shown in (4.2.2) of notes, entitled

“Attenuation and dispersion in fibres March 2013 HTE?”, after propagating an axial distance of z > 0, this plane wave becomes

U(R)=U(r,z)=4,exp(jé, + jkz) (B8)
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which means that plane wave remains as plane wave upon propagation with changes occurring only in the phase. Note that plane wave
satisfies Helmholtz equation as shown in the MATLAB code PWETest ECE474.m.

Exercise B1: Prove that the plane wave given in (B8) satisfies Helmholtz equation given in (B5) by hand derivation.

B) Spherical wave

The expression for a plane wave at source (transmitter) at z =0 is

U(R)=U (1, z = 0) — fim 2 UR) (BY)

R=0  AxR

This way, spherical wave describes a point source. At a distance z >0 from the transmitter, spherical wave can be approximated by

U(R):U(r, z):%exp[jkz—kjfﬂz] (B10)

nz z

Note that since above representation is an approximation, it does not satisfy Helmholtz equation as also shown by the m code

PWETest ECE474.m.

It is not possible to characterize all cases by plane or spherical waves. For this reason we introduce the fundamental Gaussian beam wave below.

For the source coordinate representation, we choose §, so r is the coordinate for receiver plane, s:(s,qﬁs) for cylindrical coordinates ,

s = (sx,sy) for Cartesian coordinates . Hence below, U, ( ) represent the field on the source plane.

Fundamental Gaussian Beam Wave on source plane
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Uy (s,4,)= A, exp (—kas2 ) in cylindrical coordinates (Gla)

U, (sx,sy) A, exp[ -0. Sk(a Sy + ays; )J in Cartesian coordinates (G1b)

where 4, is the amplitude coefficient, k=27/1 is the wave number with 1 being the wavelength, a=1/(ka?)+0.5//F, where a, and F,
respectively refer to radial Gaussian source size and focusing parameter, j=+/—1. Similar definitions apply to Cartesian case. Note that in

cylindrical coordinates, there is no ¢, dependence, thus perfect angular symmetry.

To see the profile of this beam, we usually plot the intensity, which is given by

1,(s,8,)=U, (5.6,)U, (5,9,) * indicating conjugate (G2a)
I (858, ) = Uy (505, ) U3 (s505,,) (G2b)
Ly =1,( )/max[I,( )] (G2¢)

By substituting from (G1la) and (G1b) into (G2a) and (G2b), intensity will become

. : 2 2 52
I,(s,8,)= A2 exp{—k( 12 +O;J+ 12 —O;JJsz}zAfexp[—%J . ()= Afexp[— - ——;} (G3a)

ka; s kag B ; a5 ay,

From the m file GaussianbeamS.m, it is possible to see the 3D plots, contour plots and 2D plots of Gaussian beam intensity profiles at different

source sizes, namely «; =0.1 c¢m, 1 ¢cm, 2 cm, 5 cm . These are shown in Figs. GB-1, GB-2 and GB-3. As the measurements taken, by pointing data
cursor to the appropriate locations, we measure approximately the given source sizes at the point of s=¢, . Note that at the points of

s=a,, 5, =0, 5, =a,,, the intensity expressions in (G3a) will assume the following numeric values
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2 B 2
I,(s,¢,)= A% exp| - = 4 exp(-2)=0.1353 , I,(sy,5, )= A4 exp —(Sx_zs’“) B f"y) = A%exp(-2)=0.1353 if 4,=1  (G3b)
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Fig. GB-1 3D plots of Gaussian beams at ¢, =0.1 cm, 1 cm, 2 cm, 5 cm with data cursors pointed to approximately exp(—2)=0.1353.
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Source intensity plot for Gaussian beam with ag = 0.1 cm Source intensity plot for Gaussian beam with ag = 1.0 cm

0.15 1.5}
0.1 1t
£ 0.05 £ 051
o o
c c
2 0 2 0 ]
8005 8 05
> o>
-0.1 -1}
-0.15 -1.51
-0.2 + - -2
-0.2 -0.1 0 0.1 -2
s axisincm s axisincm
X X
Source intensity plot for Gaussian beam with ag = 2.0cm Source intensity plot for Gaussian beam with ag = 5.0 cm
3t
21 5t
I £
] ]
c c
2 0 2 O
x %
c 1] ©
o> o>
-2} -5}
-3l
-4 -10
- -10
s _axisincm s axisincm
X X

Fig. GB-2 Contour plots of Gaussian beams at o, =0.1 cm, 1 cm, 2 cm, 5 cm.
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Source intensity plot for Gaussian beam with ag = 0.1 cm Source intensity plot for Gaussian beam with ag = 1.0cm
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Fig. GB-3 2D plots of Gaussian beams (cut along the diagonal axis) at o, =0.1 ¢cm, 1 ¢cm, 2 ¢cm, 5 cm with data cursors pointed to approximately

exp(—Z) =0.1353.
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Fundamental Gaussian Beam Wave on receiver plane

Now we try to find the receiver field for a Gaussian source beam.

This can be done in two ways
A) Direct Solution Method
We postulate the field on the receiver plane at a z distance away from the source to be in the form of

2
kar

p(z)

U,(r.¢.)=A(z)exp {— } in cylindrical coordinates (G4)

Where 4(z) and p(z)are the parameters to be determined subject to initial conditions of the source plane. This way by comparing (G4) with

(Gla), we deduce that
A(z=0)=4. , p(z=0)=1 (G5)

On the other hand, (G4) should satisfy the PWE in (B6), thus by substituting (G4) in (B6) and rearranging we get the following differential

equation
2%’ A(z2)+ jk*ar’ A(2) p'(z) - 2kad(z) p(z) + jkA' (z) p* () =0 (G6)

By setting the coefficients of % and #° (which are the first two and the last two terms in (G6)) independently to zero will yield
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2. p(2)=2ja=—L -2 G7
rm: p'(2)=2ja t? F (G7a)
AN AR A G YT (G7b)
()=t =Lt
From (G7), we get the solutions as
. 1 1
p(z)=1+2]az , A(z): (G8)

p(z) B 1+2jaz

Returning to (G4), with this arrangement, the receiver field expression will be

2
U, (rig) =—2¢ exp{ kar J (@9)

“1+2jaz | 1+2jaz
Note that similar to the source field, since there is angular symmetry, the angular variable ¢,1s dummy. With the inclusion of exp( jkz) , the

receiver field will be

. 2
U, (r..2) =2 (/) ., [— kor J (G10)
1+2jaz 1+2joz

From the test in the m file PWETest ECE474.m, it is seen that (G9) satisfies the PWE, not the Helmholtz equation. Now we turn to the
second method called Huygens-Fresnel integral
B) Huygens-Fresnel integral

Huygens-Fresnel integral is used to find the receiver field from a given source field of U, (s,4,) via double integration as shown below
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Z)= —jkexp(jkz) fded¢ sU, (.4, )eXp{zk[ 2rscos(g, —¢S)—|—s2 +r2}} in cylindrical coordinates (G11)

Uy (r, roZ 27z

00
where the exponential inside the integrand is known as the diffraction term, i.e. it describes how the optical wave diffracts (opens up, spreads,
hence the wavefront becomes wider) as it propagates in free space. This diffraction exponential is derived from the Green’s function using
the paraxial approximation. Note that there is a Cartesian coordinate equivalence of (G11) as given below

00

— jkexp(jkz) ik .
) —JKEXpLUJRZ) p Jkz) f f dsds,U ( y)exp{é_z[_zsxrx 25,1, + 52 +s§ +r? +ry2}} in Cartesian coordinates (G12)

—00 —0Q

U, (rx,ry,z

The simplified diagram of source and receiver in Cartesian coordinates is shown in the following picture. Here we shall continue with (G11).
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By inserting from (Gla) for U, (s,¢, )in (G11) we get

. . . 00 27
Ur(r, ,,z)—‘]l{%z(]kZ)Acexp[Jkr ffdsdqﬁ sexp( kas )exp{zk[ 2rscos(¢r—¢s)+s2]}
00

_—jk exp(jkz) 4 ex [
27z

fd¢ exp{ k[ 2rscos(¢r —¢S)]} (G13)

fds sexp[ kas® +
The outer integral, i.e. the integral with respect to ¢, can be solved using the following

—ﬁrs cos(¢,, — @, )] 2rd, [krs] (G14) This is a reduced version of 3.937.2 of Gradshteyn and Ryzhik 2007, pp. 496
z

2
[ dg,exp
0

Then the remaining part of the integral over s is in the following form and can be solved via

kr?
z(4az—2j)

z
ex
2kaz — jk P

(G15) This is a reduced version of 6.631.4 of Gradshteyn and Ryzhik 2007, pp. 706

fsdsJO [k ]exp
0 z

—ka +ﬁ]s2 =
2z

Collecting all terms and simplifying, the received field of Gaussian beam will be

; 2
U, (r.4,.2) =4 Mexp(—ﬂJ (G16)

“1+2jaz 1+2jaz

As seen, (G16) which is obtained by the Huygens-Fresnel integral method is the same as (G10) which is the result from Direct Solution method.
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Now we turn to illustration of receiver plane intensity profile of Gaussian beam. Benefiting from (G2a) and using (G16), receiver intensity can be

written as
I1.(r, r,z)zU,(r, ,,Z)U:(r, ,,z)z A*Cz 5 eXp| — 2 ata* 5 (G17)
1+2j(a—a )z+4|a| 22 1+2j(a—a )z+4|a| z

(G17) is plotted in GaussianbeamR.m file. Although running this m file will show how intensity evolves along the propagation axis, it is more
instructive to plot the variation of beam size, since the general profile of the Gaussian beam remains Gaussian upon propagation, where the beam

spreads more and more with increasing propagation distance due to diffraction.

Converting (G17) into an expression in terms of source size and the focusing parameter, we get

I, (r,¢r,z)

AZ 2 4F2 2 2 2F2
ck a, L'y 2 k a, I (Glg)

= exp| —r
k2afﬂz - 2k2aquz + 4Eg222 + kzozfz2 { k2afFS2 - 2k2a‘?Fsz + 4F;222 + kzocfz2

Assuming no loss of power during propagation, the total power on source or on receiver plane will be

027 02 02w

P= _[ I dgsdsU, (5,4, )U, (5,6,)= I I dgsdsl (s,4,)= 27z'|. sdsl(s)= I J. dg,rdrl,.(r,¢.,z)= 27ZI rdrl, (r,z) (G19)
00 00 0 00 0
Now by using either (G3) or (G18) and the following integration formula

P= I dx xexp(—ﬂxz) = i This is a modified version of 3.321.4 or 3.326.2 of Gradshteyn and Ryzhik 2007 on pp. 336 and pp. 337 respectively  (G20)
0

P will become
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P:Af%aﬁ (G21)

As expected, the power is directly proportional to the source size, «, on the source plane.

In order to examine the changes of beam size (named as such on receiver plane), we formulate the beam size as follows

027 1/2 © 172
a, =|:2.(|; E[ de.rdrl, (r, r,z)/P} :|:4ﬂ£r3dr1r (r,z)/P} (G22)

Performing the integration in (G22) using

m+1

m+1

[ x exp(—ﬂx" ) ="/ Thisis 3.326.2 of Gradshteyn and Ryzhik 2007 on pp. 337  (G23)
0
np "

where I'( ) is the Gamma function, «, turns into

1/2
2 452 2 4 2.2 2 .4 2
ar:[k o F; =2k"aFz+4Fz" +k"a;z J (G24)

2 22
KalF;

Considering the format in (G18) and (G24), the receiver intensity expression can be written as

Alol 2
I.(r.¢.,z)= ;25 exp[— 5 (G25)
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To find the variation of the focusing parameter, usually called the radius of curvature, along the propagation axis, we first take (Gla) and write it

as

2

22
Uy (s.4,) =4, exp(—kas2 ) =4, exp(—%—%} (G26)

s

Then from (G16) we try to write the receiver field in the same format as that of RHS

ik 2 ik ka 1—2ja*z
Ur(r,¢r,z):AcMexp __ker™ |\ _ CeXP(J Z)eX 2 ( )
1+2jaz 1+2jaz 1+2jaz (1+2jaz)(1—2ja Z)
4 exp(jkz) 5 KalF? Jjkr* 4F?z—K*alF, + K alz
1+ 2jaz P T E K F 4 AR K 2 R FR ke Foz AR 1 K2
ST S s S8 N S s S8 ST Ss S S
exp( jk: 2 2
=Ac—p(J Z)exp —r——j—kr (G27)
1+2jaz 2 72F,

Hence the radius of curvature at receiver plane becomes

ol F? =2k ol Fz +AF? 2 + kol 2*

2 2 4 2 4
AF2z—K*alF, + Ko’z

F =

7

(G28)

The variations of beam size and radius of curvature are investigated in the m files, Beamsize.m and Focusingpram.m. These files will also be

used in the experiments. Depending on the initial value of F, , the beams are classified as

a) F, > . This is called collimated beam, it diffracts slowly as we go away from the source plane as shown below
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a =a V2
r S

2 a =a_ =4cm
s B ¢

\

5 z_ = 0.5 ko?
“[" F_ - «, Collimated beam R s

4 Fr < 0, Radius of curvature —
B ZB \
/ i i i i i i i i

[
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
z in km - Propagation distance

s or r axis in cm - Beam size borders

b) F,>0. This is called convergent or focused beam, the beam size first becomes smaller, then larger as we go away from the source plane

as shown below
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z in km - Propagation distance

c) F,<0. This is called divergent beam, the beam always expands as we go away from the source plane as shown below
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s or r axis in cm - Beam size borders

15

10
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From the plot of focused beam, we see that, there is a minimum for beam size. To find the distance at which this minimum occurs (z, ), we

differentiate (G24) and set it to zero, hence z, becomes

k2a4F
2=t Oty (G29)
PR v 12l

Then substituting (G29) into (G24), we get the smallest beam size along z axis, called beam waist and denoted by «, as

4a’F? "
Op = ﬁ (G30)
AF; + k7o

Finally in this section, we define Rayleigh, near field (Fresnel region) and far field (Fraunhofer region). Rayleigh range is the point in the
propagation distance at which the beam size reaches /2 times that of the smallest beam size. In the case of a collimated, Min(a, )= e, , hence in
(G24), we let F, - o to find that z, (Rayleigh range) located at zj =0.5kar? and divergent beams. For convergent beam on the other hand, there

are two Rayleigh points extending on both sides of the beam waist. To find these points, we take ~2a 5 from (G30) and place it on the LHS of

(G24) and solve the resulting quadratic equation for z to get

_FaF, 2k F}
4F? +k*a)

_FalF, + 2k F}
4FS2 + kzaf

zp : Zp, (G31)

These are marked on the convergent beam graph given above.
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Sample problems from Andrews 2005, Chapter 4.

1) (Example 1 of Andrews 2005) The following source beam is given

a, =3 cm, F, =500 m, 2 =633 nm. For a receiver plane located at z =1.2 km , find the followings

a) Beam size, «, on the receiver plane,

b) Radius of curvature F, on the receiver plane,

c¢) On axis intensity /,(r,¢,.,z) at » =0 on the receiver plane,
d) Propagation distance to beam waist, z,,

¢) Beam size at waist, a,

f) Beam size at geometric focus, 1.e. z=F,.

Solution :
. C KalF? —212a’F.z + 4F*2% + kKol Z? 12
a) Using (G24) which is «, = S zz;ze £ s =428 cm (P1)
2 470 A2 4 22,2 42
b) Using (G28) which is F, =— - fs ~ a2 tdl # *laez 5105, (2)
AF z—k"a/F,+k"oz
2 2 2
c¢) Using (G25) which is 7, (r=0,¢,,z)= A"—f“'exp(—%} =0.492 W/m? assuming 4, =1 (P3)
r a}"
. . KPalF,
d) Using (G29) which is z =—— -8 =494 m (P4)

2, 2 4
4F7 + k7o
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12
4a*F?
e) Using (G30) whichis oz =| ———=—| =0.33cm P5
) g( ) B [4F52+k2afJ ( )

f) Inserting z=F, =500 min (P1), we get

1/2
KatF? - 2k2aF? + 4F* + o F? 2F
‘ aS ES' a

s

2) (Problem 8 of Andrews 2005) For a collimated source beam with 2 =0.5 yum, o, =1 cm, find the beam size and radius of curvature, 1.e.

a, and F. on a receiver plane situated at z=1km .

) 4 ,\1/2
. . C g 4
Solution : Using (G24) and letting F, — o, then which is «, :(koli?z_zzj =1.88 cm (P8)
aS‘

Kol +4z°

For F, on the other hand, we use (G28) under the condition F, — « , then F, =— 1
z

=-1.395 km

3) (Problem 9 of Andrews 2005) A collimated beam with 2=0.5 um has a beam size of «, =7 cmat a distance of z =10 km form the source

plane. Find the source size «; .

Solution : Recognizing that this is a collimated beam, i.e., F, — « we use (P8) to get k’a) —k*a’a? +4z* =0 P9).

By setting a,, =a?, we find the roots of (P9) as &, =20 cm and a, = 2.4 cm . Amoung these solutions, only «, = 2.4 cm is physically

meaningful, since a beam size of «, =7 ¢mis not possible for a collimated beam with a source size of o, =20 cm .
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4) (Problem 13 of Andrews 2005) A convergent beam with 1=0.5 yum and a, =5 cm 1s observed at a distance of 500 m from the source
plane with «, =2 cm. Identify the position of beam waist z; and beam waist size ay, if it is

a) Located somewhere between the source and the receiver plane at z =500 m,

b) Located somewhere beyond the receiver plane at z =500 m .

Solution : By inserting the given numeric values in (G24) and try to solve the resulting quadratic equation for F, we get
0.84F —10° F,+24x10* =0 (P10)

The first root here will be F,; =833 m . By inserting this into (G29) and (G30), we obtain the followings

25 =830 m, az =2.65 mm (P11)

From (P10), we get the second root as F,, =357 m . Correspondingly z,, and a,, will become

zp, =355m, ag, =1.135 mm (P12)

Here both solutions are equally valid as illustrated below.
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10 [ [ [ [ [ [ [ [ [
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5) (Problem 19 of Andrews 2005) For the beam in problem 1) calculate the Rayleigh Range, zz and zp,

Solution : By using the formulation given in (G31), zz and z, are calculated as
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R, ~2kalF?
4F? v ko]

_KalF, +2kalF}?
4F? v kol

zp =439m Zg, =549 m (P13)

From the numeric results of question 1), we see that z; =494 m, hence zj <z <z as predicted theoretically and as shown in the above

illustration for the case of convergent beam. Now to show that the beam sizes «,, and «,, at zg and zj are equal using (G24) we calculate

1/2
2 452 2 4 2.2 242 2 42 2 4 2.2 2. .42
o, = =047 c , Q=

2 22 2 242
kOCSF; kast

1/2
] =047cm  (Pl4)

6) (Problem 15 of Andrews 2005) A beam focused at 1 km with 42 =0.5 um has «, =8.9 cm on a receiver plane located at z =5 km . For this

beam

a) Calculate source size, i.e., «,,
b) Calculate the radius of curvature on the receiver plane, i.e., F,,
c) Ifthe same beam is now focused at 5 km, what are «, and F, at this distance.

d) Under the conditions given in c), find the beam waist, i.e., a; and its distance to the source plane, i.e., z;.

Solution : a) By using the formulation given in (G24), we get an equation to the power of four of « as stated below
2
(1 —%] Kot —kala? +422 =0 (P15)

After inserting the numeric values we get the roots as

a,=1.9869cm , «a,,=1.0015cm (P16)
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2
Out of these solutions, the second one belongs to a divergent beam which will come from [1 _FiJ =16 with z =5 km and F,; =1 km (numeric
N

2
values in the problem), but [1 _FiJ =16 will also be satisfied by z =5 km and F,, =-5/3 km , where the negative value of F, points to a

N

divergent beam. Hence the following picture.

kza;‘}‘;2 - 2k2afF;z + 4F;222 + kzajz2

b) Use (G28) and a,=1.9869 cm, F, =1 kmto get F, = =—-4.1706 km (P17)
) ( ) 8 4FS22 - kzafFS + kzafz
. . .. 2F,
¢) If F, =5km =z, then inserting this into (G24) we get the same as (P6), thus a, = . £=402cm , F. oo (P18)
a?
12
40’ F? KalF
d) To calculate aj and z; use (G30) and (G29). Thus a3 =| ————=—| =1.78cm zp=—7—F —=987.5m (P19)
) B B ( ) ( ) B (4}7;24—/(2&?} B 41‘—;24-1(720[;‘

7) Inserting F, — o (i.e. collimated beam) in (G24), (G28), (G29) and (G30), find the more simplified expressions of «,, F,, z,, ag.

Solution : The relevant expressions are given below

1/2 1/2
Ko F? -2k 20 F 2+ 4F22% + K202 Kot +422
Q. = Ol asz SZZ o z %2 = % the same as (P8) (P20)
’ ka; F; ka;
KalF? —2k*alFz +4F2 2% + kPl z? Kol +4z°
F;ZF_)(X) _ h h 2 A2\4 A2 4 p [ p (P21)
: AF z—k“a,F, +k“a,z 4z
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Divergent beam with Fs =-5/3 km

Convergent beam with Fs =1km

Beam size borders
N

(=)

s orr axis incm
1
N

—
a,= 1.0015 cm e B

[ [ [ [

[

i
0.5 1 1.5 2 2.5 3
z in km - Propagation distance

—J =0 (P22)

12
—] =a, (P23)
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Note that (P22) and (P23) are reasonable, since for a collimated beam, beam waist is located at source plane.

Relationship between the physical sizes of «,, o,, F,, k(1) and z (Applicable to convergent beam only) - Misleading

Considering (G24) and collecting terms on one side, we have
(RF} =202 Fz+ 1727 o} —Ka} o] +4F}2* =0 (R1)

Here the roots are

CalF? + \/k“a;‘F;‘ —16F2Z* (kst2 2P Fz + 72

U510 = (R2)

2(KPF] =2k Fz+ 127
So for a physically reasonable result, it should be that

Kol Y =16F2 (IO F =2 Fz +1°2 )20 (R3)

Solving (R3) for o, we get the relationship as

rz 5 4Z(Fs —Z) or 0!,2 5 4z(z—Fs)
kF, kF.

N N

a (R4)
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