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Notes on Free Space Propagation (Based on Andrews 2005 and my own notes and papers) HTE – 16.04.2012

Fig. FS1 : General schematic diagram of fibre communication link and atmospheric communication link.

Li
gh

t s
ou

rc
e

M
od

ul
at

or

Tr
an
sm
itt
ed

el
ec
tri
ca
l

m
es
sa
ge

si
gn
al

Ph
ot

od
et

ec
to

r
D

em
od

ul
at

or

R
ec

ei
ve

d
el

ec
tri

ca
l

m
es

sa
ge

si
gn

alNA

z = 0

     

     

Transmitter

Transmitter
Transmitted
electrical
message
signal

Source plane

Light
source

Received
electrical
message
signal

Fibre Communication Link

Collecting lens

z = L

Fibre cable - Communication channel

Receiver plane
Photodetector

Receiver

Receiver

Ur ( r, r, z )Atmospheric Communication Link

Us ( s, s )

Atmosphere, free space - Communication channel2 
s 2 

r



ECE 474 – HTE 2012 Sayfa 2

       ,  is given, where , ,  or , ,  and  is time dependence, then ,  satisfies the followingU t r z x y z t U tR R = R = R

 
 2

2 2
2

,
, 0       ......  Wave equation                               (B1)

U t
U t c

t
R

R    


After we assume a sinusoidal time dependence, i.e.      , expU t U j tR R , then we obtain

   2 2 0     ..... Helmholtz equation                                 (B2)k U R  

The Laplacian operator, 2 is respectively expressed in cylindrical and Cartesian coordinates as follows

2 2 2 2 2
2

2 2 2 2 2 2 2

2 2 2
2

2 2 2

1 1 1 1        in cylindrical coordinates       (B3a)

        in Cartesian coordinates              (B3b)

r
r r r r z r r r r z

x y z

 
                        

  
   

  

Thus, Helmholtz equation for cylindrical coordinates is

       
 

2 2 2
2

2 2 2 2

1 1 0       in cylindrical coordinates        (B4)
U U U U

k U
r r r r z

R R R R
R

   
    

   

Now we assume a z dependence of  exp jkz , such that      expU U jkzR r , where    ,  or ,r x yr r  Then Helmholtz equation will

become
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       2 2

2 2 2

1 1 2 0       in cylindrical coordinates     (B5)
U U U U

r jk
r r r r z z

r r r r                

Usually, the optical propagation is confined to z axis. This means that the transverse distance is much smaller the axial distance, then we may

drop the term
 2

2

U
z

r


since it is too small with respect to the others. The remaining part of the wave equation is called the paraxial wave

equation (PWE). This is shown below

             2 2 2

2 2 2 2 2

1 1 1 12 2 0       PWE in cylindrical coordinates        (B6)
U U U U U U U

r jk jk
r r r r z r r r r z 

r r r r r r r                         

Simple waves (optical fields)

A) Plane wave

The expression for a plane wave at source (transmitter) at 0z is

     0 0, 0 exp                            (B7)U U z A jR r  

Note that the expression of plane wave on the right hand side contains no coordinate dependence. As shown in (4.2.2) of notes, entitled

“Attenuation and dispersion in fibres_March 2013_HTE”, after propagating an axial distance of 0z , this plane wave becomes

     0 0, exp                              (B8)U U z A j jkzR r  
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which means that plane wave remains as plane wave upon propagation with changes occurring only in the phase. Note that plane wave

satisfies Helmholtz equation as shown in the MATLAB code PWETest_ECE474.m.

Exercise B1: Prove that the plane wave given in (B8) satisfies Helmholtz equation given in (B5) by hand derivation.

B) Spherical wave

The expression for a plane wave at source (transmitter) at 0z is

   
 

0

exp
, 0 lim (B9)

4R

jkR
U U z

R
R r


  

This way, spherical wave describes a point source. At a distance 0z from the transmitter, spherical wave can be approximated by

   
21, exp                          (B10)

4 2
jkrU U z jkz

z z

      
R r 

Note that since above representation is an approximation, it does not satisfy Helmholtz equation as also shown by the m code

PWETest_ECE474.m.

It is not possible to characterize all cases by plane or spherical waves. For this reason we introduce the fundamental Gaussian beam wave below.

For the source coordinate representation, we choose s , so r is the coordinate for receiver plane,  ,  for cylindrical coordinatesss s ,

 ,  for Cartesian coordinatesx ys ss . Hence below,  sU represent the field on the source plane.

Fundamental Gaussian Beam Wave on source plane
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   
   

2

2 2

, exp        in cylindrical coordinates                         (G1a)

, exp 0.5       in Cartesian coordinates                         (G1b)

s s c

s x y c x x y y

U s A k s

U s s A k s s

 

 

 

    

where cA is the amplitude coefficient, 2 /k   is the wave number with  being the wavelength, 21/( ) 0.5 /s sk j F   where  ands sF

respectively refer to radial Gaussian source size and focusing parameter, 1j   . Similar definitions apply to Cartesian case. Note that in

cylindrical coordinates, there is no s dependence, thus perfect angular symmetry.

To see the profile of this beam, we usually plot the intensity, which is given by

     

     

*

*

, , ,          * indicating conjugate                                (G2a)

, ,                                      (G2b),
s s s s s s

s s x y s x y

sN

x y

I s U s U s

I U s s U s s

I

s s

  



   / max             (G2c)s sI I   

By substituting from (G1a) and (G1b) into (G2a) and (G2b), intensity will become

   
222

2 2 2 2
2 2 2 2 2

1 0.5 1 0.5 2, exp exp     ,       exp                        (G3a), yx
s s c c s c

s ss s s sx sy
x y

ssj j sI s A k s A I A
F Fk k

s s
    

     
                          

From the m file GaussianbeamS.m, it is possible to see the 3D plots, contour plots and 2D plots of Gaussian beam intensity profiles at different

source sizes, namely 0.1 cm, 1 cm, 2 cm, 5 cms  . These are shown in Figs. GB-1, GB-2 and GB-3. As the measurements taken, by pointing data

cursor to the appropriate locations, we measure approximately the given source sizes at the point of ss  . Note that at the points of

,  ,s x sx y sys s s     , the intensity expressions in (G3a) will assume the following numeric values
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           
 

22 2
2 2 2 2

2 2 2
2

, exp exp 2 0.1353  ,   exp exp 2 0.1353   if  1       (G3b), y sys x sx
s s c c s c c c

s sx sy
x y

ss s
I s A A I A A As s

 


  

                       

Fig. GB-1 3D plots of Gaussian beams at 0.1 cm, 1 cm, 2 cm, 5 cms  with data cursors pointed to approximately  exp 2 0.1353  .
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Fig. GB-2 Contour plots of Gaussian beams at 0.1 cm, 1 cm, 2 cm, 5 cms  .
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Fig. GB-3 2D plots of Gaussian beams (cut along the diagonal axis) at 0.1 cm, 1 cm, 2 cm, 5 cms  with data cursors pointed to approximately

 exp 2 0.1353  .
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Fundamental Gaussian Beam Wave on receiver plane

Now we try to find the receiver field for a Gaussian source beam.

This can be done in two ways

A) Direct Solution Method

We postulate the field on the receiver plane at a z distance away from the source to be in the form of

     
2

, exp        in cylindrical coordinates                         (G4)r r
k rU r A z
p z


 
  

  

Where  A z and  p z are the parameters to be determined subject to initial conditions of the source plane. This way by comparing (G4) with

(G1a), we deduce that

   0   ,   0 1    (G5)cA z A p z   

On the other hand, (G4) should satisfy the PWE in (B6), thus by substituting (G4) in (B6) and rearranging we get the following differential

equation

             2 2 2 2 2 22 2 0                                   (G6)k r A z jk r A z p z k A z p z jkA z p z      

By setting the coefficients of 2 0 andr r (which are the first two and the last two terms in (G6)) independently to zero will yield
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 

       
   

2
2

0

0.5 :   2  (G7a)

2 :                      (G7b)

ss

jr p z j
Fk

p zjr A z A z A z
p z p z






   


    

From (G7), we get the solutions as

     
1 11 2   ,                        (G8)

1 2
p z j z A z

p z j z



   



Returning to (G4), with this arrangement, the receiver field expression will be

 
2

, exp       (G9)
1 2 1 2

c
r r

A k rU r
j z j z


 

 
     

Note that similar to the source field, since there is angular symmetry, the angular variable r is dummy. With the inclusion of  exp jkz , the

receiver field will be

    2exp
, , exp        (G10)

1 2 1 2
c

r r
A jkz k rU r z

j z j z


 
 

     

From the test in the m file PWETest_ECE474.m, it is seen that (G9) satisfies the PWE, not the Helmholtz equation. Now we turn to the

second method called Huygens-Fresnel integral

B) Huygens-Fresnel integral

Huygens-Fresnel integral is used to find the receiver field from a given source field of  ,s sU s  via double integration as shown below
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 
 

   
2

2 2

0 0

exp
, , , exp 2 cos         in cylindrical coordinates        (G11)

2 2r r s s s r s
jk jkz jkU r z dsd sU s rs s r

z z



    


               
 

where the exponential inside the integrand is known as the diffraction term, i.e. it describes how the optical wave diffracts (opens up, spreads,

hence the wavefront becomes wider) as it propagates in free space. This diffraction exponential is derived from the Green’s function using

the paraxial approximation. Note that there is a Cartesian coordinate equivalence of (G11) as given below

      2 2 2 2exp
, , , exp 2 2       in Cartesian coordinates        (G12)

2 2r x y x y s x y x x y y x y x y
jk jkz jkU r r z ds ds s s s r s r s s r r

z z
U



 



                 
 

The simplified diagram of source and receiver in Cartesian coordinates is shown in the following picture. Here we shall continue with (G11).

z = 0

z = L

z

Propagation Axis

sx

sy

s

rx

ry

r

Source Plane Receiver Plane

Free Space
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By inserting from (G1a) for  ,s sU s  in (G11) we get

 
     

 

22
2 2

0 0
2 2

2

exp
, , exp exp exp 2 cos

2 2 2

exp
                  exp  exp

2 2 2

r r c s r s

c

jk jkz jkr jkU r z A dsd s k s rs s
z z z

jk jkz jkr jksA ds s k s d
z z z



    





                       

                  

 

 
2

0 0

exp 2 cos                  (G13)
2s r s
jk rs
z



  
           
 

The outer integral, i.e. the integral with respect to s can be solved using the following

 
2

0
0

exp cos 2   (G14)     This is a reduced version of 3.937.2 of Gradshteyn and Ryzhik 2007, pp. 496s r s
jk krsd rs J
z z



   
            



Then the remaining part of the integral over s is in the following form and can be solved via

 

2
2

0
0

exp exp           (G15)  This is a reduced version of 6.631.4 of Gradshteyn and Ryzhik 2007, pp. 706
2 2 4 2

krs jk z krsdsJ k s
z z k z jk z z j


 

                              


Collecting all terms and simplifying, the received field of Gaussian beam will be

    2exp
, , exp                 (G16)

1 2 1 2r r c
jkz k rU r z A
j z j z


 

 
     

As seen, (G16) which is obtained by the Huygens-Fresnel integral method  is the same as (G10) which is the result from Direct Solution method.
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Now we turn to illustration of receiver plane intensity profile of Gaussian beam. Benefiting from (G2a) and using (G16), receiver intensity can be

written as

     
   

2 *
* 2

2 2* 2 * 2
, , , , , , exp                 (G17)

1 2 4 1 2 4
c

r r r r r r
AI r z U r z U r z kr

j z z j z z
   

     

 
   

       

(G17) is plotted in GaussianbeamR.m file. Although running this m file will show how intensity evolves along the propagation axis, it is more

instructive to plot the variation of beam size, since the general profile of the Gaussian beam remains Gaussian upon propagation, where the beam

spreads more and more with increasing propagation distance due to diffraction.

Converting (G17) into an expression in terms of source size and the focusing parameter, we get

 
2 2 4 2 2 2 2

2
2 4 2 2 4 2 2 2 4 2 2 4 2 2 4 2 2 2 4 2

2
, , exp                 (G18)

2 4 2 4
c s s s s

r r
s s s s s s s s s s s s

A k F k FI r z r
k F k F z F z k z k F k F z F z k z

 


     

 
         

Assuming no loss of power during propagation, the total power on source or on receiver plane will be

           
2 2 2

*

0 0 0 0 0 0 0 0
, , , 2 , , 2 ,                 (G19)s s s s s s s r s r r r rP d sdsU s U s d sdsI s sdsI s d rdrI r z rdrI r z

  
        

    

           

Now by using either (G3) or (G18) and the following integration formula

 2

0

1 exp      This is a modified version of 3.321.4 or 3.326.2 of Gradshteyn and Ryzhik 2007 on pp. 336 and pp. 337 respectively      (G20)
2

P dx x x




  

P will become
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2 2                              (G21)
2c sP A  

As expected, the power is directly proportional to the source size, s on the source plane.

In order to examine the changes of beam size (named as such on receiver plane), we formulate the beam size as follows

   
1/ 2 1/22

3 3

0 0 0
2 , , / 4 , /                 (G22)r r r r rd r drI r z P r drI r z P


   

    
    
      
  

Performing the integration in (G22) using

  1
0

1

 exp        This is 3.326.2 of Gradshteyn and Ryzhik 2007 on pp. 337          (G23)m n
m

n

m
ndx x x

n









  
  

where   is the Gamma function, r turns into

1/ 22 4 2 2 4 2 2 2 4 2

2 2 2
2 4

                 (G24)s s s s s s
r

s s

k F k F z F z k z
k F

  




   
   
 

Considering the format in (G18) and (G24), the receiver intensity expression can be written as

 
2 2 2

2 2
2, , exp                  (G25)c s

r r
r r

A rI r z 


 

 
   

 
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To find the variation of the focusing parameter, usually called the radius of curvature, along the propagation axis, we first take (G1a) and write it

as

   
2 2

2
2, exp exp                                  (G26)

2s s c c
ss

s jksU s A k s A
F

 


 
      

 

Then from (G16) we try to write the receiver field in the same format as that of RHS

       
  

 

*2
2

*

2 2 2 2 2 4 22
2

2 4 2 2 4 2 2 2 4 2

1 2exp exp
, , exp exp

1 2 1 2 1 2 1 2 1 2

exp 4
                  exp

1 2 22 4

r r c c

s s s s s s
c

s s s s s s

k j zjkz jkzk rU r z A A r
j z j z j z j z j z

jkz k F F z k F kjkrA r
j z k F k F z F z k z

 
    

  
   

                  

 
  

   

 

4

2 4 2 2 4 2 2 2 4 2

2 2

2

2 4

exp
                  exp

1 2 2

s s s s s s

c
rr

z
k F k F z F z k z

jkz r krA j
j z F

  

 

 
     
 

      
                                       (G27)

Hence the radius of curvature at receiver plane becomes

2 4 2 2 4 2 2 2 4 2

2 2 4 2 4
2 4

                 (G28)
4

s s s s s s
r

s s s s

k F k F z F z k zF
F z k F k z

  
 

  
 

 

The variations of beam size and radius of curvature are investigated in the m files, Beamsize.m and Focusingpram.m. These files will also be

used in the experiments. Depending on the initial value of sF , the beams are classified as

a) sF   . This is called collimated beam, it diffracts slowly as we go away from the source plane as shown below
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b) 0sF  . This is called convergent or focused beam, the beam size first becomes smaller, then larger as we go away from the source plane

as shown below
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c) 0sF  . This is called divergent beam, the beam always expands as we go away from the source plane as shown below
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From the plot of focused beam, we see that, there is a minimum for beam size. To find the distance at which this minimum occurs ( Bz ), we

differentiate (G24) and set it to zero, hence Bz becomes

2 4

2 2 4                 (G29)
4

s s
B

s s

k Fz
F k







Then substituting (G29) into (G24), we get the smallest beam size along z axis, called beam waist and denoted by B as

1/22 2

2 2 4
4

                (G30)
4

s s
B

s s

F
F k





 
    

Finally in this section, we define Rayleigh, near field (Fresnel region) and far field (Fraunhofer region). Rayleigh range is the point in the

propagation distance at which the beam size reaches 2 times that of the smallest beam size. In the case of a collimated,  Min r s  , hence in

(G24), we let sF   to find that Rz (Rayleigh range) located at 20.5R sz k and divergent beams. For convergent beam on the other hand, there

are two Rayleigh points extending on both sides of the beam waist. To find these points, we take 2 B from (G30) and place it on the LHS of

(G24) and solve the resulting quadratic equation for z to get

1 2

2 4 2 2 2 4 2 2

2 2 4 2 2 4
2 2

         ,                                (G31)
4 4
s s s s s s s s

R R
s s s s

k F k F k F k Fz z
F k F k

   
 

 
 

 

These are marked on the convergent beam graph given above.
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Sample problems from Andrews 2005, Chapter 4.

1) (Example 1 of Andrews 2005) The following source beam is given

3 cm, 500 m, 633 nms sF    . For a receiver plane located at 1.2 kmz  , find the followings

a) Beam size, r on the receiver plane,

b) Radius of curvature rF on the receiver plane,

c) On axis intensity  , ,r rI r z at 0r  on the receiver plane,

d) Propagation distance to beam waist, Bz ,

e) Beam size at waist, B ,

f) Beam size at geometric focus, i.e. sz F .

Solution :

a) Using (G24) which is
1/ 22 4 2 2 4 2 2 2 4 2

2 2 2
2 4

4.28 cm            (P1)s s s s s s
r

s s

k F k F z F z k z
k F

  




   
   
 

b) Using (G28) which is
2 4 2 2 4 2 2 2 4 2

2 2 4 2 4
2 4

710.5 m         (P2)
4

s s s s s s
r

s s s s

k F k F z F z k zF
F z k F k z

  
 

  
   

 

c) Using (G25) which is  
2 2 2

2
2 2

20, , exp 0.492 W/m    assuming 1               (P3)c s
r r c

r r

A rI r z A


 

 
      

 

d) Using (G29) which is
2 4

2 2 4 494 m                              (P4)
4

s s
B

s s

k Fz
F k



 


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e) Using (G30) which is
1/22 2

2 2 4
4

0.33 cm                          (P5)
4

s s
B

s s

F
F k





 
    

f) Inserting 500 msz F  in (P1), we get

1/ 22 4 2 2 4 2 4 2 4 2

2 2 2
2 4 2

0.34 cm                             (P6)s s s s s s s s
f

ss s

k F k F F k F F
kk F

  




   
    
 

2) (Problem 8 of Andrews 2005) For a collimated source beam with 0.5 m , 1 cms    , find the beam size and radius of curvature, i.e.

 andr rF on a receiver plane situated at 1 kmz  .

Solution : Using (G24) and letting sF   , then which is
1/ 22 4 2

2 2
4

1.88 cm            (P8)s
r

s

k z
k





 
   
 

For rF on the other hand, we use (G28) under the condition sF   , then
2 4 24

1.395 km
4

s
r

k zF
z

 
   

3) (Problem 9 of Andrews 2005) A collimated beam with 0.5 m  has a beam size of 7 cmr  at a distance of 10 kmz  form the source

plane. Find the source size s .

Solution : Recognizing that this is a collimated beam, i.e., sF   we use (P8) to get 2 4 2 2 2 24 0         (P9)s r sk k z     .

By setting 2
2s s  , we find the roots of (P9) as 20 cm and 2.4 cms s   . Amoung these solutions, only 2.4 cms  is physically

meaningful, since a beam size of 7 cmr  is not possible for a collimated beam with a source size of 20 cms  .
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4) (Problem 13 of Andrews 2005) A convergent beam with 0.5 m  and 5 cms  is observed at a distance of 500 m from the source

plane with 2 cmr  . Identify the position of beam waist Bz and beam waist size B , if it is

a) Located somewhere between the source and the receiver plane at 500 mz  ,

b) Located somewhere beyond the receiver plane at 500 mz  .

Solution : By inserting the given numeric values in (G24) and try to solve the resulting quadratic equation for sF we get

2 3 40.84 10 +24 10 0               (P10)s sF F  

The first root here will be 1 833 msF  . By inserting this into (G29) and (G30), we obtain the followings

1 1830 m , 2.65 mm            (P11)B Bz  

From (P10), we get the second root as 2 357 msF  . Correspondingly 2 2 andB Bz  will become

2 2355 m , 1.135 mm             (P12)B Bz  

Here both solutions are equally valid as illustrated below.
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5) (Problem 19 of Andrews 2005) For the beam in problem 1) calculate the Rayleigh Range,
1Rz and

2Rz

Solution : By using the formulation given in (G31),
1Rz and

2Rz are calculated as
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1 2

2 4 2 2 2 4 2 2

2 2 4 2 2 4
2 2

439 m         ,           549 m  (P13)
4 4
s s s s s s s s

R R
s s s s

k F k F k F k Fz z
F k F k

   
 

 
  

 


From the numeric results of question 1), we see that 494 mBz  , hence
1 2R B Rz z z  as predicted theoretically and as shown in the above

illustration for the case of convergent beam. Now to show that the beam sizes 1 2 andr r  at
1Rz and

2Rz are equal using (G24) we calculate

1/ 2 1/ 22 4 2 2 4 2 2 2 4 2 2 4 2 2 4 2 2 2 4 2
1 1 1 2 2 2

1 22 2 2 2 2 2
2 4 2 4

0.47 cm      ,      0.47 cm          (P14)s s s s R s R s R s s s s R s R s R
r r

s s s s

k F k F z F z k z k F k F z F z k z
k F k F

     
 

 

        
         
   

6) (Problem 15 of Andrews 2005) A beam focused at 1 km with 0.5 m  has 8.9 cmr  on a receiver plane located at 5 kmz  . For this

beam

a) Calculate source size, i.e., s ,

b) Calculate the radius of curvature on the receiver plane, i.e., rF ,

c) If the same beam is now focused at 5 km, what are r and rF at this distance.

d) Under the conditions given in c), find the beam waist, i.e., B and its distance to the source plane, i.e., Bz .

Solution : a) By using the formulation given in (G24), we get an equation to the power of four of s as stated below

2
2 4 2 2 2 21 4 0                           (P15)s r s

s

z k k z
F

  
 
    

 

After inserting the numeric values we get the roots as

1 2=1.9869 cm    ,     =1.0015 cm                 (P16)s s 
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Out of these solutions, the second one belongs to a divergent beam which will come from
2

1 16
s

z
F

 
  

 
with 15 km and 1 kmsz F  (numeric

values in the problem), but
2

1 16
s

z
F

 
  

 
will also be satisfied by 25 km and 5 / 3 kmsz F   , where the negative value of sF points to a

divergent beam. Hence the following picture.

b) Use (G28) and =1.9869 cm , 1 kms sF  to get
2 4 2 2 4 2 2 2 4 2

2 2 4 2 4
2 4

4.1706 km           (P17)
4

s s s s s s
r

s s s s

k F k F z F z k zF
F z k F k z

  
 

  
   

 

c) If 5 kmsF z  , then inserting this into (G24) we get the same as (P6), thus 2
4.02 cm      ,                  (P18)s

f r
s

F F
k




  

d) To calculate  andB Bz use (G30) and (G29). Thus
1/22 2 2 4

2 2 4 2 2 4
4

1.78 cm      ,        987.5 m          (P19)
4 4

s s s s
B B

s s s s

F k Fz
F k F k
 


 

 
       

7) Inserting sF   (i.e. collimated beam) in (G24), (G28), (G29) and (G30), find the more simplified expressions of ,  ,  ,r r B BF z  .

Solution : The relevant expressions are given below

1/ 2 1/ 22 4 2 2 4 2 2 2 4 2 2 4 2

2 2 2 2 2
2 4 4

          the same as (P8)    (P20)
s

s s s s s s s
r F

s s s

k F k F z F z k z k z
k F k

   


 
      

       
   

2 4 2 2 4 2 2 2 4 2 2 4 2

2 2 4 2 4
2 4 4

                                      (P21)
44s

s s s s s s s
r F

s s s s

k F k F z F z k z k zF
zF z k F k z

   
 

    
       
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2 4

2 2 4 0          (P22)
4s

s s
B F

s s

k Fz
F k




 
    

1/22 2

2 2 4
4

            (P23)
4s

s s
B F s

s s

F
F k


 


 
    
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Note that (P22) and (P23) are reasonable, since for a collimated beam, beam waist is located at source plane.

Relationship between the physical sizes of  ,  ,  ,   ands r sF k z   (Applicable to convergent beam only) - Misleading

Considering (G24) and collecting terms on one side, we have

 2 2 2 2 2 4 2 2 2 2 2 22 4  0           (R1)s s s r s s sk F k F z k z k F F z      

Here the roots are

 
 

2 2 2 4 4 4 2 2 2 2 2 2 2
2
1,2 2 2 2 2 2

16 2
   (R2)

2 2

r s r s s s s
s

s s

k F k F F z k F k F z k z

k F k F z k z

 


   


 

So for a physically reasonable result, it should be that

 4 4 4 2 2 2 2 2 2 216 2 0         (R3)r s s s sk F F z k F k F z k z    

Solving (R3) for 2
r , we get the relationship as

   2 24 4
    or              (R4)s s

r r
s s

z F z z z F
kF kF

 
 

 
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